\(\int \cot ^4(c+d x) \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx\) [449]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 173 \[ \int \cot ^4(c+d x) \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {67 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{64 d}+\frac {61 a \cot (c+d x)}{64 d \sqrt {a+a \sin (c+d x)}}+\frac {61 a \cot (c+d x) \csc (c+d x)}{96 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{24 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^3(c+d x) \sqrt {a+a \sin (c+d x)}}{4 d} \]

[Out]

-67/64*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))*a^(1/2)/d+61/64*a*cot(d*x+c)/d/(a+a*sin(d*x+c))^(1/2
)+61/96*a*cot(d*x+c)*csc(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)-1/24*a*cot(d*x+c)*csc(d*x+c)^2/d/(a+a*sin(d*x+c))^(1/
2)-1/4*cot(d*x+c)*csc(d*x+c)^3*(a+a*sin(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2960, 2852, 212, 3123, 3059, 2851} \[ \int \cot ^4(c+d x) \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {67 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{64 d}+\frac {61 a \cot (c+d x)}{64 d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc ^3(c+d x) \sqrt {a \sin (c+d x)+a}}{4 d}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{24 d \sqrt {a \sin (c+d x)+a}}+\frac {61 a \cot (c+d x) \csc (c+d x)}{96 d \sqrt {a \sin (c+d x)+a}} \]

[In]

Int[Cot[c + d*x]^4*Csc[c + d*x]*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(-67*Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(64*d) + (61*a*Cot[c + d*x])/(64*d*Sqrt
[a + a*Sin[c + d*x]]) + (61*a*Cot[c + d*x]*Csc[c + d*x])/(96*d*Sqrt[a + a*Sin[c + d*x]]) - (a*Cot[c + d*x]*Csc
[c + d*x]^2)/(24*d*Sqrt[a + a*Sin[c + d*x]]) - (Cot[c + d*x]*Csc[c + d*x]^3*Sqrt[a + a*Sin[c + d*x]])/(4*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2960

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Dist[1/d^4, Int[(d*Sin[e + f*x])^(n + 4)*(a + b*Sin[e + f*x])^m, x], x] + Int[(d*Sin[e + f*x])^
n*(a + b*Sin[e + f*x])^m*(1 - 2*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&
  !IGtQ[m, 0]

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rubi steps \begin{align*} \text {integral}& = \int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx+\int \csc ^5(c+d x) \sqrt {a+a \sin (c+d x)} \left (1-2 \sin ^2(c+d x)\right ) \, dx \\ & = -\frac {\cot (c+d x) \csc ^3(c+d x) \sqrt {a+a \sin (c+d x)}}{4 d}+\frac {\int \csc ^4(c+d x) \left (\frac {a}{2}-\frac {11}{2} a \sin (c+d x)\right ) \sqrt {a+a \sin (c+d x)} \, dx}{4 a}-\frac {(2 a) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d} \\ & = -\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{24 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^3(c+d x) \sqrt {a+a \sin (c+d x)}}{4 d}-\frac {61}{48} \int \csc ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx \\ & = -\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}+\frac {61 a \cot (c+d x) \csc (c+d x)}{96 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{24 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^3(c+d x) \sqrt {a+a \sin (c+d x)}}{4 d}-\frac {61}{64} \int \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx \\ & = -\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}+\frac {61 a \cot (c+d x)}{64 d \sqrt {a+a \sin (c+d x)}}+\frac {61 a \cot (c+d x) \csc (c+d x)}{96 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{24 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^3(c+d x) \sqrt {a+a \sin (c+d x)}}{4 d}-\frac {61}{128} \int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx \\ & = -\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}+\frac {61 a \cot (c+d x)}{64 d \sqrt {a+a \sin (c+d x)}}+\frac {61 a \cot (c+d x) \csc (c+d x)}{96 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{24 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^3(c+d x) \sqrt {a+a \sin (c+d x)}}{4 d}+\frac {(61 a) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{64 d} \\ & = -\frac {67 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{64 d}+\frac {61 a \cot (c+d x)}{64 d \sqrt {a+a \sin (c+d x)}}+\frac {61 a \cot (c+d x) \csc (c+d x)}{96 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{24 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^3(c+d x) \sqrt {a+a \sin (c+d x)}}{4 d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(367\) vs. \(2(173)=346\).

Time = 2.28 (sec) , antiderivative size = 367, normalized size of antiderivative = 2.12 \[ \int \cot ^4(c+d x) \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {\csc ^{13}\left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sin (c+d x))} \left (442 \cos \left (\frac {1}{2} (c+d x)\right )-162 \cos \left (\frac {3}{2} (c+d x)\right )+122 \cos \left (\frac {5}{2} (c+d x)\right )+366 \cos \left (\frac {7}{2} (c+d x)\right )+603 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-804 \cos (2 (c+d x)) \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+201 \cos (4 (c+d x)) \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-603 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+804 \cos (2 (c+d x)) \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-201 \cos (4 (c+d x)) \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-442 \sin \left (\frac {1}{2} (c+d x)\right )-162 \sin \left (\frac {3}{2} (c+d x)\right )-122 \sin \left (\frac {5}{2} (c+d x)\right )+366 \sin \left (\frac {7}{2} (c+d x)\right )\right )}{192 d \left (1+\cot \left (\frac {1}{2} (c+d x)\right )\right ) \left (\csc ^2\left (\frac {1}{4} (c+d x)\right )-\sec ^2\left (\frac {1}{4} (c+d x)\right )\right )^4} \]

[In]

Integrate[Cot[c + d*x]^4*Csc[c + d*x]*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-1/192*(Csc[(c + d*x)/2]^13*Sqrt[a*(1 + Sin[c + d*x])]*(442*Cos[(c + d*x)/2] - 162*Cos[(3*(c + d*x))/2] + 122*
Cos[(5*(c + d*x))/2] + 366*Cos[(7*(c + d*x))/2] + 603*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - 804*Cos[2
*(c + d*x)]*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 201*Cos[4*(c + d*x)]*Log[1 + Cos[(c + d*x)/2] - Sin
[(c + d*x)/2]] - 603*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + 804*Cos[2*(c + d*x)]*Log[1 - Cos[(c + d*x)
/2] + Sin[(c + d*x)/2]] - 201*Cos[4*(c + d*x)]*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - 442*Sin[(c + d*x
)/2] - 162*Sin[(3*(c + d*x))/2] - 122*Sin[(5*(c + d*x))/2] + 366*Sin[(7*(c + d*x))/2]))/(d*(1 + Cot[(c + d*x)/
2])*(Csc[(c + d*x)/4]^2 - Sec[(c + d*x)/4]^2)^4)

Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.94

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (201 \left (\sin ^{4}\left (d x +c \right )\right ) \operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (d x +c \right )-1\right )}}{\sqrt {a}}\right ) a^{4}+183 \left (-a \left (\sin \left (d x +c \right )-1\right )\right )^{\frac {7}{2}} \sqrt {a}-671 \left (-a \left (\sin \left (d x +c \right )-1\right )\right )^{\frac {5}{2}} a^{\frac {3}{2}}+737 \left (-a \left (\sin \left (d x +c \right )-1\right )\right )^{\frac {3}{2}} a^{\frac {5}{2}}-201 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, a^{\frac {7}{2}}\right )}{192 a^{\frac {7}{2}} \sin \left (d x +c \right )^{4} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(162\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)^5*(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/192*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)/a^(7/2)*(201*sin(d*x+c)^4*arctanh((-a*(sin(d*x+c)-1))^(1/2)/a^
(1/2))*a^4+183*(-a*(sin(d*x+c)-1))^(7/2)*a^(1/2)-671*(-a*(sin(d*x+c)-1))^(5/2)*a^(3/2)+737*(-a*(sin(d*x+c)-1))
^(3/2)*a^(5/2)-201*(-a*(sin(d*x+c)-1))^(1/2)*a^(7/2))/sin(d*x+c)^4/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 415 vs. \(2 (149) = 298\).

Time = 0.28 (sec) , antiderivative size = 415, normalized size of antiderivative = 2.40 \[ \int \cot ^4(c+d x) \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {201 \, {\left (\cos \left (d x + c\right )^{5} + \cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \sin \left (d x + c\right ) + \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) - 4 \, {\left (183 \, \cos \left (d x + c\right )^{4} + 122 \, \cos \left (d x + c\right )^{3} - 188 \, \cos \left (d x + c\right )^{2} + {\left (183 \, \cos \left (d x + c\right )^{3} + 61 \, \cos \left (d x + c\right )^{2} - 127 \, \cos \left (d x + c\right ) - 53\right )} \sin \left (d x + c\right ) - 74 \, \cos \left (d x + c\right ) + 53\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{768 \, {\left (d \cos \left (d x + c\right )^{5} + d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{3} - 2 \, d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right ) + {\left (d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{2} + d\right )} \sin \left (d x + c\right ) + d\right )}} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^5*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/768*(201*(cos(d*x + c)^5 + cos(d*x + c)^4 - 2*cos(d*x + c)^3 - 2*cos(d*x + c)^2 + (cos(d*x + c)^4 - 2*cos(d*
x + c)^2 + 1)*sin(d*x + c) + cos(d*x + c) + 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x
 + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x
 + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*
x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) - 4*(183*cos(d*x + c)^4 + 122*cos(d*x + c)^3 - 188*cos(d*x + c
)^2 + (183*cos(d*x + c)^3 + 61*cos(d*x + c)^2 - 127*cos(d*x + c) - 53)*sin(d*x + c) - 74*cos(d*x + c) + 53)*sq
rt(a*sin(d*x + c) + a))/(d*cos(d*x + c)^5 + d*cos(d*x + c)^4 - 2*d*cos(d*x + c)^3 - 2*d*cos(d*x + c)^2 + d*cos
(d*x + c) + (d*cos(d*x + c)^4 - 2*d*cos(d*x + c)^2 + d)*sin(d*x + c) + d)

Sympy [F(-1)]

Timed out. \[ \int \cot ^4(c+d x) \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**5*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cot ^4(c+d x) \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int { \sqrt {a \sin \left (d x + c\right ) + a} \cos \left (d x + c\right )^{4} \csc \left (d x + c\right )^{5} \,d x } \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^5*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*cos(d*x + c)^4*csc(d*x + c)^5, x)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.23 \[ \int \cot ^4(c+d x) \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {\sqrt {2} {\left (201 \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) - \frac {4 \, {\left (1464 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 2684 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 1474 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 201 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}\right )} \sqrt {a}}{768 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^5*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/768*sqrt(2)*(201*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1/4*
pi + 1/2*d*x + 1/2*c)))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) - 4*(1464*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(
-1/4*pi + 1/2*d*x + 1/2*c)^7 - 2684*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 1/2*d*x + 1/2*c)^5 + 147
4*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 1/2*d*x + 1/2*c)^3 - 201*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c
))*sin(-1/4*pi + 1/2*d*x + 1/2*c))/(2*sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)^4)*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int \cot ^4(c+d x) \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4\,\sqrt {a+a\,\sin \left (c+d\,x\right )}}{{\sin \left (c+d\,x\right )}^5} \,d x \]

[In]

int((cos(c + d*x)^4*(a + a*sin(c + d*x))^(1/2))/sin(c + d*x)^5,x)

[Out]

int((cos(c + d*x)^4*(a + a*sin(c + d*x))^(1/2))/sin(c + d*x)^5, x)